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Introduction 

It has recently become obvious that language processing using artificial intelligence is not only here to stay, 
but also here to change research and society. This insight dawned most saliently with the surfacing of the 
chatbot ChatGPT (CGPT), based on the large language model (LLM) GPT3 of the company OpenAI. For 
psychological research, an important question concerns the extent to which LLMs faithfully represent 
dimensions of human experience. Specifically, the extent to which the perceptual semantics of LLMs map 
onto human perceptual semantics remains unclear. Marjieh et al. (2023) observed that GPT3 structurally 
aligns with human auditory experience, as probed with dissimilarity judgments of consonants, timbre, pitch, 
and loudness. Here, we are interested in the extent to what the CGPT chatbot aligns with human judgments 
of semantic dimensions of sound, the study of which has important implications for understanding the 
relation between perception, language, and meaning (Saitis & Weinzierl, 2019).  

Methods 

We considered the dataset by Reymore et al. (2023): 540 online participants rated notes from eight Western 
orchestral instruments (flute, oboe, bass clarinet, trumpet, trombone, cello, violin, bowed vibraphone) 
across three registers (low, medium, and high) on 20 semantic scales (5-point; see Table 1). These were 
derived from interviews and rating tasks for imagined typical sounds of instruments (Reymore & Huron, 
2020). They are thus well suited to the task: CGPT cannot listen to a musical tone but might have a general 
understanding of how it sounds. Indeed, after providing its ratings, the chatbot added that these “are based 
on general observations and typical characteristics of a [instrument]’s sound in different registers.” We 
note that dissimilarity relations between imagined and heard sounds strongly correlate (Halpern et al., 
2004), while those between heard sounds can be conflated with knowledge about source-cause categories 
(Saitis & Siedenburg, 2020; Siedenburg et al., 2016).  

Our CGPT prompt template was designed as follows: “Please rate how well the descriptions provided in 
the following (separated by semi-colons) apply to the sound of a [instrument] for a low-register, mid-
register, and high-register note on a scale from 1 to 5 where 1 is "does not describe at all", 3 is "describes 
moderately well" and 5 is "describes extremely well": 1) deep, thick, heavy; ... 20) watery, fluid. Provide 
your response in matrix form, with columns corresponding to registers (low, mid, high) and rows 
corresponding to attributes 1-20 (in matched order).” We collected 50 rounds of ratings from CGPT. This 
allowed us to assess the internal consistency of its ratings and compare it with human ratings. Data from 
four CGPT “raters” were discarded due to many NAs. 
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Results 

We first focussed on the five scales that were fitted reasonably well (R2 > .2) by the main LME model in 
the original publication. Ratings for each scale and each of the 24 stimuli were averaged across raters in 
each group. Correlation between human and machine ratings (Fig. 1) was high for deep, thick, heavy (r 
= .86 [.82, .88]) and sparkling, brilliant, bright (r = .81 [.73, .87]), with similar patterns across registers but 
a marked offset towards higher points for machine versus human ratings (square brackets correspond to 
95% confidence intervals obtained by bootstrapping the CGPT data). Shrill, harsh, noisy and raspy, grainy, 
gravelly both showed positive, albeit weaker correlations (r > .41, lower bound of CI > .32). The correlation 
for projecting, commanding, powerful was indistinguishable from chance.  

Inter-Rater Correlation 

Next, we considered the consistency of ratings from human participants and CGPT. For each of the five 
scales considered here, we computed correlations between all pairs of responses within groups (human-
human, CGPT-CGPT) and across groups (human-CGPT). For deep, median inter-rater correlations (IRC) 
were moderate (IRC =.65) and of comparable magnitude in the three types of comparisons. A similar pattern 
was observed for sparkling, albeit with weaker correlations (median IRC = .38). The situation differed for 
the other three scales, where within-group correlations was generally positive (median IRC > .29), but 
agreement between ratings from humans and CGPT broke down with IRC close to zero. We found very 
strong correlations between median IRC and the standard deviations of average rating profiles within both 
the human (r = .99, p < .001) and CGPT (r = .98, p < .001) groups of ratings, implying that scales with little 
variance of average rating profiles featured little agreement among raters. 

Factor Analysis 

We finally explored human and CGPT timbre semantic spaces using exploratory factor analysis based on 
all 20 semantic scales. Horn’s (1965) parallel analysis supported a three-factor solution for both groups. 
Factor analysis was performed using principal axis (PA) factoring with non-orthogonal oblimin rotation to 
account for non-normal multivariate distributions. The factors cumulatively accounted for 82% and 70% 
of data variance in the human and machine ratings, respectively. Individual factor variance is not available 
for the rotated solution due to the non-orthogonality of the factors. Human and CGPT factor loadings of the 
20 semantic scales are reported in Table 1. Correlations between individual human and machine factors 
were moderate to weak, absolute Pearson r values being between .003 (Human PA3-CGPT PA3) and .38 
(Human PA3-CGPT PA2) with confidence intervals overlapping with zero. The overall correlation between 
the two semantic spaces was indistinguishable from chance, r = -.07 [-.17, .25].    
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Table 1: Human and CGPT factor loadings of semantic scales after oblimin rotation. 

Human ChatGPT 

Scales PA1 PA2 PA3 PA1 PA2 PA3 

Deep, thick, heavy -.59 .64 .19 -.62 .13 .67 

Smooth, singing, sweet .96 .20 .27 .60 .70 -.12 

Projecting, commanding, powerful -.89 .07 .26 .88 -.01 .12 

Nasal, buzzy, pinched -.88 -.07 .03 .46 -.44 -.14 

Shrill, harsh, noisy -.02 -.92 -.16 .69 -.60 -.16 

Percussive (sharp beginning) -.02 -.90 -.22 -.01 -.51 .18 

Pure, clear, clean .98 -.03 .13 .92 .09 .04 

Brassy, metallic -.17 .25 -.27 .27 -.84 .13 

Raspy, grainy, gravelly -.92 .25 -.03 .01 -.61 .68 

Ringing, long decay .42 -.48 -.51 .52 .48 .09 

Sparkling, brilliant, bright .59 -.63 -.21 .69 -.08 -.53 

Airy, breathy .90 .32 .10 .13 .61 -.01 

Resonant, vibrant -.50 .00 -.28 .34 .33 .71 

Hollow .02 .98 -.21 -.37 .65 .00 

Woody -.58 .35 .37 -.17 .50 .50 

Muted, veiled .35 .95 -.25 .08 -.28 .89 

Sustained, even .12 -.14 .97 .47 .76 .33 

Open .62 -.33 .23 .70 .26 .06 

Focused, compact .12 .00 1.00 .95 .00 .09 

Watery, fluid .98 .21 -.02 .17 .76 -.21 

In bold are factor loadings ≥ .70 

Perspectives 
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Even though preliminary in nature, this study reveals first insights into the way in which musical timbre is 
semantically represented by large language models. ChatGPT generated semantic profiles that only partially 
correlated with human ratings yet showed robust agreement along well-known psychophysical dimensions 
of musical sounds such as pitch height (deep–high) and brightness (bright–dark). These dimensions are not 
completely independent for natural sounds (Siedenburg et al., 2021; Russo & Thompson 2005), but appear 
to yield robust agreement between human and CGPT ratings. This is consistent with the findings regarding 
pitch height by Marjieh et al. (2023). Unexpectedly, the chatbot showed degrees of internal variability that 
were comparable in magnitude to that of human ratings. Certainly, the reliability of CGPT may be affected 
by several boundary conditions (e.g., it is explicitly designed for use in chatbot applications). Yet it seems 
to be important for our understanding of CGPT that its ratings show a comparable variance across 
conversations as responses across human raters. 

An important difference between the present study and that of Marjieh et al. (2023) concerns the relation 
between the prompted task and what the model might already know about it. CGPT and GPT3 are both part 
of a series of models trained on a blend of text and code from before Q4 2021. The human loudness and 
timbre dissimilarity datasets considered by Marjieh et al. (2023) were published in 1978 and 2018, 
respectively. Is it possible that in their case GPT3 was aware of these studies? And could that have 
influenced the high correlation they observed for loudness and the moderate correlation for timbre? In 
contrast, the human data considered in this study appeared in early 2023, therefore they do not form part of 
CGPT's “knowledge.” 

The pace of development of large language models such as CGPT is extraordinarily high and by the time 
of writing this manuscript, the model GPT4 has been released. Therefore, the present work can only be 
considered as a snapshot into how one specific version of CGPT (GPT3, probed in February 2023) construes 
sound semantics. Yet, researchers might start to track the evolution of machine behavior over time (or 
development cycles), so that a more complete picture concerning the relation of human and machine 
semantics can be drawn. Analysing the structure and behavior of deep learning based algorithms optimized 
to replicate human perceptual tasks has already become an important approach in perception science 
(Eickenberg et al., 2017; Kell et al., 2018; Giordano et al., 2023). 
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