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Chapter 11 )
Audio Content Descriptors of Timbre ST

Marcelo Caetano, Charalampos Saitis, and Kai Siedenburg

Abstract This chapter introduces acoustic modeling of timbre with the audio
descriptors commonly used in music, speech, and environmental sound studies.
These descriptors derive from different representations of sound, ranging from the
waveform to sophisticated time-frequency transforms. Each representation is more
appropriate for a specific aspect of sound description that is dependent on the infor-
mation captured. Auditory models of both temporal and spectral information can be
related to aspects of timbre perception, whereas the excitation-filter model of sound
production provides links to the acoustics of sound production. A brief review of the
most common representations of audio signals used to extract audio descriptors
related to timbre is followed by a discussion of the audio descriptor extraction pro-
cess using those representations. This chapter covers traditional temporal and spec-
tral descriptors, including harmonic description, time-varying descriptors, and
techniques for descriptor selection and descriptor decomposition. The discussion is
focused on conceptual aspects of the acoustic modeling of timbre and the relation-
ship between the descriptors and timbre perception, semantics, and cognition,
including illustrative examples. The applications covered in this chapter range from
timbre psychoacoustics and multimedia descriptions to computer-aided orchestra-
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tion and sound morphing. Finally, the chapter concludes with speculation on the
role of deep learning in the future of timbre description and on the challenges of
audio content descriptors of timbre.

Keywords Environmental sound - Excitation-filter model - Machine learning -
Musical instrument - Pattern recognition - Sound color - Speech - Time-frequency
analysis

11.1 Introduction

A sound wave carries a pattern of oscillations, which was generated by a driving
force that excited a vibrating object through a physical medium such as the air.
When the sound wave reaches the ear, these oscillations are processed and inter-
preted by the brain as sound. On its way from the source to the ear, the sound wave
carries precise information about the vibrating object (e.g., a cello), the driving
force (e.g., bowed), and possibly other physical objects with which it interacted
(e.g., the walls of a concert hall). The human brain has a remarkable ability to con-
vert the detailed information contained in sound waves into the meaningful experi-
ence of hearing—from the minute inflections of speech that facilitate human
communication to the expressiveness of microvariations in music (Handel 1995).
But how do sound waves convey identifiable properties of the sound source, of the
sound-generating event, and even of the objects with which the sound wave inter-
acted? What aspects of the audio representation of the sound wave, commonly
called the waveform, carry information about the size or material of the source, the
type of excitation (e.g., knocking or rubbing) that generated it, or its perceived tim-
bre? What is the acoustic basis of perceived dissimilarities, such as those between
different instruments, different registers of the same instrument, and different play-
ers playing the same instrument? This chapter examines how differences in timbre
manifest themselves in the audio signal and how such information can be extracted
computationally from different signal representations in the form of audio descrip-
tors to acoustically characterize timbre in music, speech, and environmental sounds.

Today timbre is understood from two perceptual viewpoints: as a sensory quality
and as a contributor to source identity (Siedenburg and McAdams 2017). In the
former, two sounds can be declared qualitatively dissimilar without bearing source-
cause associations. In the latter, timbre is seen as the primary perceptual vehicle for
the recognition and tracking over time of the identity of a sound source. Both
approaches consider timbre as a very complex set of perceptual attributes that are
not accounted for by pitch, loudness, duration, spatial position, and spatial charac-
teristics such as room reverberation (Siedenburg, Saitis, and McAdams, Chap. 1).
When timbre is viewed as qualia, its attributes underpin dissimilarity (McAdams,
Chap. 2) and semantic ratings (Saitis and Weinzierl, Chap. 5). In the timbre-as-
identity scenario, they facilitate sound source recognition (Agus, Suied, and
Pressnitzer, Chap. 3). Further adding to its complex nature, timbre functions on
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different scales of detail (Siedenburg and McAdams 2017) in the sense that one
sound-producing object can yield multiple distinct timbres (Barthet et al. 2010), and
timbres from sound-producing objects of the same type but different “make” may
differ substantially enough to affect quality judgements (Saitis et al. 2012). How
informative is a given audio descriptor when examining different scales of timbre?
What is the acoustic difference between a note played pianissimo and the same note
played fortissimo or notes played in different registers on the same instrument?

Some of the most successful attempts to establish relationships between audio
descriptors and perceptual aspects of timbre have resulted from multidimensional
scaling (MDS) of pairwise dissimilarity ratings between musical instrument sounds
(Grey and Gordon 1978; McAdams et al. 1995). Descriptors calculated from tem-
poral and spectrotemporal representations of the audio signal are typically corre-
lated with the dimensions of MDS timbre spaces to capture the acoustic cues
underpinning the mental representation of timbre (McAdams, Chap. 2). Beyond
psychoacoustics and music psychology, extracting quantitative descriptors poten-
tially related to timbre from audio signals is an important part of the music informa-
tion retrieval (MIR) discipline (Casey et al. 2008; Levy and Sandler 2009). The MIR
task most relevant to timbre per se is musical instrument classification, which relies
on an ensemble of descriptors associated with both the excitation-filter model and
time-frequency representations to classify musical instrument sounds. However, the
way audio descriptors are approached by MIR diverges from psychology due to dif-
ferences in epistemic traditions and scientific goals between the two disciplines
(Siedenburg et al. 2016a), a point discussed further in Sect. 11.4.1.

In MIR, descriptors are more commonly referred to as features. In psychology,
features are discrete whereas dimensions are continuous (Peeters et al. 2011). In
multimedia, features are perceptual by nature and descriptors are representations of
features with specific instantiations (i.e., values) associated with data (Nack and
Lindsay 1999). Pitch, for instance, is a feature of periodic sounds; fundamental
frequency fj is a possible descriptor of pitch and f; = 440 Hz is the corresponding
descriptor value. In MIR, features are extracted from the audio independently of the
intrinsic nature of the information they represent (Casey et al. 2008). As such, a
chord, the melody, and even the spectral envelope can be a feature. Following
Peeters et al. (2011), the term descriptor is adopted here to disambiguate the con-
cept of extracting information from the audio signal to describe its content.

Key questions that arise in working with audio descriptors of timbre include the
following:

e What audio descriptors are appropriate for different tasks?

*  What is the relation between the information captured by the descriptor and its
usefulness?

* What is the relation between audio descriptors and perceptual, semantic, and
cognitive aspects of timbre?

e What temporal information is important for timbre and how should it be repre-
sented with descriptors?

e How do we deal with timbral dimensions that covary with other perceptual
dimensions?
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Attempting to provide some answers to these questions, this chapter lays out a
pathway into audio descriptor design and application. Section 11.2 presents basic
audio representations that serve as a starting point for the extraction of audio
descriptors presented in Sect. 11.3. Subsequently, Sect. 11.4 explores important
applications of audio descriptors in the domain of timbre psychoacoustics, sound
meta-description, musical orchestration, and sound morphing. Section 11.5 closes
with a discussion of deep learning in automatic audio description and promising
avenues for future research.

11.2 Representations of Audio Signals

This section introduces basic mathematical representations of audio from which
audio descriptors can be extracted, which is not intended as a thorough explanation
with a full mathematical treatment but rather as a general intuitive overview of the
main concepts involved. The waveform (see Figs. 11.1-11.3) represents the pattern
of pressure oscillations of a sound wave. Positive amplitude corresponds to com-
pression and negative amplitude represents rarefaction. In digital audio, the discrete
representation of sound waves is obtained by sampling continuous waveforms.
Specifically, a discrete waveform is the result of sampling its analog counterpart at
regular time intervals. The waveform contains all of the information carried by the
sound wave it represents, but the waveform itself is seldom useful as a representa-
tion from which to extract perceptually meaningful information about timbral attri-
butes or to categorize the sound source.

Figures 11.1-11.3 illustrate a typical sequence of steps taken to transform a
waveform into a representation suitable for audio content description. The wave-
form is first windowed into time frames and the spectrum of each frame is obtained
with the discrete Fourier transform (DFT). Descriptors are then computed globally
or for each time frame. Details of the different steps are discussed below and in Sect.
11.3. To hear the sounds used in Figs. 11.1-11.3, go to the sound files “music.mp3”,
“speech.mp3”, and “water.mp3”.

11.2.1 Short-Time Fourier Transform and Spectrogram

The DFT is the standard method to obtain a representation of the frequency decom-
position of the waveform called the frequency spectrum (Jaffe 1987a, b). The dis-
crete frequencies of the DFT are linearly spaced, which means that adjacent
frequency samples are separated by a constant interval called a frequency bin.

The short-time Fourier transform (STFT) analyzes a signal in terms of time and
frequency by viewing it through successive overlapping windows, as depicted in
Figs. 11.1-11.3, and then taking the DFT of each windowed frame (Portnoff 1980).
The effect of the window is to concentrate the information in a short temporal frame.
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Fig. 11.1 Tllustration of the sequence of steps to extract audio content descriptors from music. The
music excerpt comprises four isolated notes (B3, G3, A4, and D4) of the monophonic trumpet track
from a multitrack recording of Beethoven’s Symphony No. 5. To hear the sounds, go to the sound
file “music.mp3”. The arrows indicate the connections between the panels. The extraction of
descriptors from time-frequency representations is illustrated going counter-clockwise from the
panel labeled waveform and the extraction of descriptors from the excitation-filter model is illus-
trated going clockwise from the panel labeled fime frame. Abbreviations: A,, amplitude of gth
partial; CC, cepstral coefficients; DFT, discrete Fourier transform; f;, frequency of gth partial; LP,
linear prediction; STFT, short-time Fourier transform
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Fig. 11.2 Tllustration of the sequence of steps to extract audio content descriptors from speech.
The speech utterance consists of a 59-year-old white female speaker (U.S. southern accent) saying
/why charge money for such garbage/, sound file “speech.mp3”. The extraction of descriptors from
time-frequency representations is illustrated going counter-clockwise from the panel labeled wave-
form and the extraction of descriptors from the excitation-filter model is illustrated going clockwise
from the panel labelled time frame. Abbreviations: A, amplitude of gth partial; CC, cepstral coef-
ficients; DFT, discrete Fourier transform; f;, frequency of gth partial; LP, linear prediction; STFT,
short-time Fourier transform
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Fig. 11.3 Tllustration of the sequence of steps to extract audio content descriptors from environ-
mental sounds. The sample sound is running water, sound file “water.mp3”. The extraction of
descriptors from time-frequency representations is illustrated going counter-clockwise from the
panel labeled waveform and the extraction of descriptors from the excitation-filter model is illus-
trated going clockwise from the panel labelled time frame. Abbreviations: A,, amplitude of gth
partial; CC, cepstral coefficients; DFT, discrete Fourier transform; f;, frequency of gth partial; LP,
linear prediction; STFT, short-time Fourier transform
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Figs. 11.1-11.3 show the spectrogram, a visualization of the STFT in which the
magnitude spectrum of each DFT is plotted against time, while amplitude informa-
tion (in dB) is mapped to color intensity. The STFT has become the de facto analysis
tool for various speech and music processing tasks. However, the STFT has
notorious limitations for spectral analysis, mainly due to the constant length of the
window.

The STFT is inherently limited by the Fourier uncertainty principle, a mathe-
matical relation stating that a function and its Fourier transform cannot both be
sharply localized (Jaffe 1987b). For audio processing, this implies that there is a
fundamental tradeoff between time and frequency information. The constant length
of the window in the STFT results in fixed temporal and spectral resolutions.
Intuitively, frequency is a measure of the number of periods (or cycles) per unit
time. Longer windows span more periods, which increases the accuracy in fre-
quency estimation while simultaneously decreasing the temporal localization of the
measurement. Therefore, time-frequency uncertainty is at the core of Fourier analy-
sis and only a priori knowledge about the analyzed signal type and about the spec-
tral properties of the window used (Harris 1978) can help choose the most
appropriate spectral analysis tools for a specific application.

11.2.2 Constant Q Transform

The STFT can be interpreted as a filter bank with constant bandwidth and linear
separation of the center frequency of each filter (Portnoff 1980; Dolson 1986). The
constant bandwidth of each filter is a direct consequence of the fixed window length,
whereas the linear separation of their center frequencies is due to the constant fre-
quency bins of the DFT. However, the frequency intervals of Western musical scales
are geometrically spaced (Brown 1991), so the frequency bins of the STFT do not
coincide with the musical notes of Western musical scales. Additionally, the con-
stant bandwidth of the STFT imposes a tradeoff in time-frequency resolution, where
a window length naturally results in better spectral resolution for higher frequencies
at the cost of poorer temporal resolution. In practice, each octave would require a
different window length to guarantee that two adjacent notes in the musical scale
that are played simultaneously can be resolved. The constant Q transform exploits
a nonlinear frequency separation with an adaptive window length to yield a more
compact representation of Western musical scales (Brown 1991). The quality factor
of a resonator, denoted Q, is defined as the resonance frequency divided by the
bandwidth of the resonator. The resonance frequency is the frequency at which the
peak gain occurs, whereas the bandwidth is the frequency range around the reso-
nance frequency where the gain is above a predefined threshold. The higher the Q,
the narrower and sharper the peak is.

The constant Q transform can be calculated similarly to the DFT with geometri-
cally spaced frequency bins and frames with lengths that depend on the analysis
frequency. For musical applications, the frequency separation can be based on the

Siedenburg, K., Saitis, C., McAdams, S., Popper, A. N., & Fay, R. R. (Eds.). (2019). Timbre : Acoustics, perception, and

cognition. Retrieved from http://ebookcentral.proquest.com

Created from gmul-ebooks on 2020-05-01 10:25:21.



Copyright © 2019. Springer. All rights reserved.

11 Audio Descriptors of Timbre 305

musical scale with the semitone spacing of the equal tempered scale. A constant Q
in the frequency domain corresponds to a frame length that is inversely proportional
to frequency because the constant Q transform is designed to span the same number
of periods inside each time frame. Thus, the constant Q transform is equivalent to a
filter bank with adaptive bandwidths and nonlinear center frequencies in which the
center frequencies can be aligned with the musical scale and the bandwidths are
proportional to the center frequencies to yield a similar spectral resolution across all
octaves.

Despite being useful for the spectral analysis of Western music, the original con-
stant Q transform algorithm (Brown 1991; Brown and Puckette 1992) remained less
popular than the STFT for two main reasons. Firstly, the constant Q transform was
computationally inefficient compared to the fast Fourier transform (FFT) com-
monly used to calculate the STFT. Secondly, the original constant Q transform
(Brown and Puckette 1992) was not invertible—it allowed sound analysis but not
resynthesis. Recently, however, an efficient real-time implementation of a fully
invertible constant Q transform was made possible using the concept of Gabor
frames (Holighaus et al. 2013).

11.2.3 Auditory Filter Banks

The concepts of auditory filter banks and critical bands of human hearing are closely
related to spectrum analysis over nonlinear frequency scales. Auditory filter banks
model the acoustic response of the human ear with a bank of nonuniform bandpass
filters whose bandwidths increase as the center frequency increases (Lyon 2017).
Critical bands correspond to equal distances along the basilar membrane and repre-
sent the frequency bands into which the acoustic signal is split by the cochlea.
Zwicker (1961) proposed the Bark scale to estimate the value of the first 24 critical
bands as a function of center frequency based on empirical measurements using
two-tone masking of narrowband noise. The Bark scale is approximately linear for
frequencies below about 500 Hz and close to logarithmic at higher frequencies.
Later, Glasberg and Moore (1990) suggested the equivalent rectangular bandwidth
(ERB) scale for critical band estimation based on measurements using notched-
noise masking. The ERB of a given auditory filter is defined as the bandwidth of a
rectangular filter with similar height (peak gain) and area (total power) as the criti-
cal band it models. The ERB values are similar to those obtained by the Bark scale
for center frequencies above 500 Hz, but they are markedly narrower at lower fre-
quencies and thus more consistent with critical bandwidths measured with the more
precise notched-noise method.

Gammatone filters are a popular choice to model the shape and frequency
response of auditory filters because of their well-defined impulse response. A gam-
matone is a simple linear filter defined in the time domain as a waveform with an
amplitude envelope having the shape of a gamma distribution. Patterson et al. (1992)
showed that certain gammatone shapes provide a nearly perfect approximation to

Siedenburg, K., Saitis, C., McAdams, S., Popper, A. N., & Fay, R. R. (Eds.). (2019). Timbre : Acoustics, perception, and

cognition. Retrieved from http://ebookcentral.proquest.com

Created from gmul-ebooks on 2020-05-01 10:25:21.



Copyright © 2019. Springer. All rights reserved.

306 M. Caetano et al.

the measured human auditory filter shapes. A more precise approximation is
obtained by gammachirp filters, in which the sinusoid is replaced by a monotoni-
cally frequency-modulated signal (i.e., a chirp) (Irino and Patterson 1997).
Compared to the STFT, ERB-spaced gammatone filter banks offer a physiologically
more accurate representation of the audio signal from which to extract spectral
descriptors (Peeters et al. 2011; Siedenburg et al. 2016b). Nevertheless, the use of
auditory filter banks in acoustic analysis for timbre remains less widespread than
the STFT or cepstrum-based techniques, which are more straightforward to imple-
ment and are perfectly invertible.

11.2.4 Sinusoidal Modeling

Sinusoidal models (McAulay and Quatieri 1986) are a convenient representation of
sounds that feature periodicity, such as musical instrument sounds and speech (see
Figs. 11.1, 11.2) under the assumption that the sinusoids capture locally periodic
oscillations in the waveform. In essence, sinusoidal models represent spectral peaks
with sinusoids because the DFT of a sinusoid appears as a peak in the magnitude
spectrum (Jaffe 1987b). The time frame panels show that musical instruments
(Fig. 11.1) and speech (Fig. 11.2) feature relatively stable periodic oscillations
(locally), whereas environmental sounds rarely do (Fig. 11.3). The amplitude and
frequency of each spectral peak (see the magnitude spectrum panels in Figs. 11.1-
11.3) are estimated for each frame (McAulay and Quatieri 1986). The partials are
called harmonics when their frequencies are integer multiples of a fundamental fre-
quency. The sum of all time-varying amplitudes of the partials gives the temporal
envelope of the sound (see Fig. 11.4).

11.2.5 Temporal Envelope

The temporal amplitude envelope follows fluctuations of the amplitude of a signal.
Mathematically, it is possible to express a signal as a combination of a slowly vary-
ing envelope and a rapidly varying carrier signal. The temporal envelope and time-
varying phase of this representation of the signal are useful in audio descriptor
extraction because they model amplitude and phase modulations, respectively
(Elhilali, Chap. 12). Tremolo and vibrato are also intrinsically related to these
parameters. For example, Regnier and Peeters (2009) proposed to use vibrato to
automatically detect a singing voice in polyphonic music.

The Hilbert transform and the closely related analytic signal are useful tools to
estimate the temporal envelope without prior sinusoidal modeling (Peeters et al.
2011). A fundamental property of the DFT is behind the connection between the
original signal and the analytic signal derived from it. The DFT of a real signal is
complex and its magnitude spectrum is symmetric around the frequency axis, as
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Fig. 11.4 Illustration of the analytic signal method to estimate the temporal amplitude envelope:
(a) the magnitude spectrum of one of the trumpet notes from Fig. 11.1; (b) the magnitude spectrum
of the analytic signal associated with (a); (¢) the original waveform and the corresponding tempo-
ral envelope

shown in Fig. 11.4a. Mathematically, the property of symmetry means that the mag-
nitude spectrum has a negative frequency component that has no physical interpre-
tation. However, removing the negative frequencies and breaking the symmetry (see
Fig. 11.4b) results in a spectrum that does not correspond to the original real signal
anymore. In fact, the inverse DFT of the spectrum shown in Fig. 11.4b is a complex
signal called the analytic signal, whose real part is the original signal and whose
imaginary part is the Hilbert transform of the original signal. The temporal ampli-
tude envelope can be calculated as the low-pass filtered magnitude of the analytic
signal (Caetano et al. 2010; Peeters et al. 2011). Fig. 11.4c shows one of the trumpet
notes seen in Fig. 11.1 with the temporal envelope calculated with the Hilbert trans-
form. The Hilbert transform figures among the most widely used methods to esti-
mate the temporal envelope, but it is hardly the only one (Caetano et al. 2010).

11.2.6 Excitation-Filter Model and Convolution

The excitation-filter model, also called the source-filter model (Slawson 1985;
Handel 1995), offers a simple yet compelling account of sound production whereby
a driving force, the excitation, causes a physical object, the filter, to vibrate. Here
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the term excitation is preferred over source to avoid potential confusion with the
source of a sound, such as a musical instrument or a person. The physical properties
of the vibrating object cause it to respond differently to different frequencies present
in the excitation. Consequently, the vibrating object acts as a filter on the excitation,
attenuating certain frequencies while emphasizing others. For example, a knock on
adoor is a short abrupt driving force that causes the door to vibrate. The sound from
a wooden door is different from the sound from one with similar dimensions made
of glass or metal due to their different material properties. Bowing the strings of a
violin will cause its body to vibrate; the shape, size, and material of the violin body
are responsible for the unique sonority of the instrument. Similarly, air through the
lungs causes the vocal folds to vibrate, and the vocal tract shapes these vibrations
into the unique timbre of a person’s voice.

The interaction between the properties of the excitation and those of the vibrating
object can be interpreted as filtering, which is mathematically expressed as a convo-
lution. The Fourier transform is the key to understanding why convolution is math-
ematically equivalent to filtering because convolution in the time domain becomes
multiplication in the frequency domain (Jaffe 1987b). This property of convolution
is extremely useful for the analysis of sounds and the extraction of audio content
descriptors of timbre in light of the excitation-filter model. In particular, the filter
component (or transfer function) models how the physical properties of the vibrat-
ing object respond to the excitation in the frequency domain. The contributions of
the excitation and filter can theoretically be isolated in the frequency domain and
inverted, bringing the frequency spectrum back to the time domain. In the time
domain, the transfer function is called the impulse response and is essentially a
model of the physical properties of the vibrating object. Consequently, the impulse
response carries information intrinsically related to timbre perception that can be
used to extract audio descriptors of timbre. Section 11.3.3 explores some of the most
widely used audio descriptors of timbre based on the excitation-filter model.

11.3 Extraction of Timbre Descriptors

The raw information provided by audio signal representations such as the STFT and
the excitation-filter model is usually not specific enough to describe salient aspects
of timbre. Therefore, a plethora of techniques for extracting timbre-relevant descrip-
tors from these representations has been proposed in the field of audio content anal-
ysis. Some audio descriptors are extracted from generic time-frequency
representations and are later found to capture aspects of timbre perception, whereas
others are based on the excitation-filter model and commonly describe physical
properties of the sound source. In general, audio descriptors can represent global or
local aspects of sounds. Global descriptors only have one value for the entire dura-
tion of a sound, whereas local descriptors are commonly calculated for every frame
(see Figs. 11.1-11.3) and result in a time series.

Additionally, descriptors can be categorized as temporal, spectral, or spectrotem-
poral (Peeters et al. 2011). Temporal descriptors exclusively capture temporal
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aspects of sounds and are generally global. Some are computed directly from the
waveform, but most are typically extracted from the temporal energy envelope
(Sect. 11.2.5). Spectral descriptors capture local features of the frequency content
regardless of the surrounding frames. Spectral descriptors also have an alternative
harmonic version calculated from the sinusoidal model. Finally, spectrotemporal
descriptors capture spectral changes relative to the previous or next frames. Thus,
spectrotemporal descriptors attempt to incorporate time as relative local spectral
changes throughout the duration of a sound.

Section 11.3.1 addresses temporal descriptors and Sect. 11.3.2 covers descriptors
extracted from time-frequency representations. Section 11.3.3 focuses on descrip-
tors based on the excitation-filter model, Sect. 11.3.4 explores the temporal dynam-
ics of the time series of descriptors, and Sect. 11.3.5 discusses information
redundancy among descriptors.

11.3.1 Temporal Descriptors

The zero-crossing rate is a measure of how many times the waveform changes sign
(i.e., crosses the zero axis). In general, periodic sounds have a smaller zero-crossing
rate than noisier sounds, so the zero-crossing rate can be used in voice activity
detection, voiced-unvoiced decisions for speech, and even in the classification of
percussive sounds (Peeters et al. 2011), although there is no straightforward percep-
tual interpretation of the zero-crossing rate (Siedenburg et al. 2016a).

The temporal envelope is used to extract temporal descriptors such as tremolo
(Peeters et al. 2011), the temporal centroid, and attack time. The temporal centroid
is the temporal counterpart of the spectral centroid (see Sect. 11.4.2). Percussive
sounds have a lower temporal centroid than sustained sounds. McAdams et al.
(2017) found that a lower (i.e., earlier) temporal centroid correlated strongly with
the valence of musical affect carried by the timbre of musical instrument sounds.

The attack time is the time between the onset of a sound and its more stable part.
In musical instruments, for example, the attack time accounts for the time the par-
tials take to stabilize into nearly periodic oscillations. Percussive musical instru-
ments, such as the xylophone, feature short attack times with sharp onsets, whereas
sustained instruments, such as the tuba, feature longer attack times. The attack time
of a waveform can be estimated with models such as the weakest effort method
(Peeters et al. 2011) or the amplitude/centroid trajectory model (Hajda 2007
Caetano et al. 2010). The weakest effort method uses signal-adaptive energy thresh-
olds instead of fixed energy levels to estimate the beginning and end of the attack
from the temporal envelope. The amplitude/centroid trajectory model uses spectro-
temporal information from both the temporal envelope and the temporal evolution
of the spectral centroid to segment musical instrument sounds. Section 11.3.3 will
delve deeper into the amplitude/centroid trajectory model and the timbre descriptors
used therein. The attack time consistently arises as one of the most salient dimen-
sions in timbre spaces from MDS studies (Grey 1977; Siedenburg et al. 2016a).
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McAdams et al. (1995) found the logarithm of the attack time among the most
salient dimensions of perceptual dissimilarity.

Other common temporal descriptors (Peeters et al. 2011) include the slopes of
the energy envelope during the attack and decrease segments, the effective duration,
and the temporal modulation of energy over time (i.e., tremolo). Energy modulation
is calculated either from the temporal evolution of the amplitudes of isolated par-
tials across frames or from the temporal envelope.

11.3.2 Time-Frequency Representations and Audio Descriptors
11.3.2.1 Spectral Descriptors

Spectral descriptors are typically calculated for each frame of a time-frequency rep-
resentation such as the STFT (see Figs. 11.1-11.3). Descriptors of spectral shape
characterize the overall spectral distribution of sounds and are calculated as if the
STFT magnitude spectrum were a probability distribution. Peeters et al. (2011)
remarked that spectral descriptors can use different spectral scales such as magni-
tude, power, or log.

The spectral shape descriptors, calculated similarly to the standardized moments
of the frequency spectrum, are the spectral centroid, spectral spread, spectral skew-
ness, and spectral kurtosis. The spectral centroid is the amplitude-weighted mean
frequency. It is measured in Hertz (Hz) and is analogous to the center of mass, so it
can be interpreted as the center of balance of spectral energy distribution or the
frequency that divides the spectrum into two regions with equal energy. The spectral
centroid often appears among the most salient dimensions of timbre spaces (see
McAdams, Chap. 2), and it is interpreted as capturing the “brightness” of a sound
(Grey and Gordon 1978; McAdams et al. 1995). Sounds described as bright, such as
a brassy trombone note, have higher spectral centroids because they feature more
spectral energy in high frequency regions (see Sect. 11.4.1). The spectral spread
measures the spread of spectral energy around the spectral centroid. It is related to
the bandwidth of a filter, so a brighter sound will have a higher spectral spread than
a duller sound. Spectral skewness is a measure of asymmetry of spectral energy
around the spectral centroid. Negative values indicate more spectral energy concen-
trated at frequencies lower than the spectral centroid, positive values indicate more
energy at higher frequencies than the centroid, and zero indicates energy symmetry
around the centroid. Finally, spectral kurtosis is a measure of the flatness of the
spectral distribution of energy compared to a normal distribution. A negative value
of spectral kurtosis indicates a distribution of spectral energy flatter than the normal
distribution, whereas a positive value indicates the opposite.

Spectral flux or spectral variation (Casey et al. 2008; Peeters et al. 2011) is con-
sidered a spectrotemporal descriptor because it captures local spectral change over
time. Essentially, it measures the spectral difference of the current frame relative to
the previous frame. Compared to attack time and spectral centroid, the correlation
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of spectral flux with listener ratings of timbre similarity has been less consistent.
While in some studies the third dimension of the MDS timbre space does correlate
moderately well with the time-varying spectral flux (McAdams et al. 1995), in oth-
ers it correlates better with static descriptors of spectral deviation (deviation of
partial amplitudes from a global, smoothed spectral envelope; Krimphoff et al.
1994) or spectral irregularity (attenuation of even harmonics; Caclin et al. 2005).

Several other spectral descriptors appear in the literature (Peeters et al. 2011),
many of which capture similar properties of the spectrum. However, there is little
consensus about their usefulness or even their relationship with timbre (see Sect.
11.4.1).

11.3.2.2 Harmonic Content

Most spectral descriptors also have a harmonic version calculated by simply replac-
ing the spectral magnitude with the amplitudes of the sinusoidal model (see the
magnitude spectrum panels in Figs. 11.1-11.3), such as the harmonic energy
(Peeters et al. 2011). However, some descriptors capture information specifically
related to the oscillatory modes of the signal, commonly called partials. Figs. 11.1-
11.3 highlight the differences in both time and frequency domains for sounds of
musical instruments, speech, and environmental sounds (represented by running
water in Fig. 11.3). The time frame panels reveal that both musical instruments and
speech feature relatively stable oscillations in some regions (except where changes,
such as note transitions, are happening), whereas the running water sound is noisy.
Oscillations in the time domain appear as spectral peaks in the frequency domain.
The magnitude spectrum of the musical instrument shows prominent spectral peaks
across the entire frequency range of 0—4 kHz. For speech, the spectral peaks are less
prominent beyond approximately 2.2 kHz. Finally, the magnitude spectrum for the
water sound shows a relatively flat distribution of spectral energy typical of noise.
A fundamental result from Fourier analysis (Jaffe 1987a) reveals that the spectrum
of a perfectly periodic waveform is perfectly harmonic. However, neither speech nor
musical instrument sounds are perfectly periodic. Consequently, neither type has a
spectrum that features perfectly harmonic spectral peaks. This can be quantified with
the descriptor inharmonicity, based on the sinusoidal model (see Sect. 11.2.4).
Inharmonicity measures the deviation of the frequencies of the partials from pure
harmonics, calculated as the normalized sum of the differences weighted by the
amplitudes (Peeters et al. 2011). Sustained musical instruments, such as those from
the woodwind (e.g., flute, clarinet, bassoon, and oboe), brass (e.g., trumpet, trom-
bone, and tuba), and string (e.g., violin, viola, and cello) families, produce sounds
whose spectra are nearly harmonic (Fletcher 1999). Percussion instruments (e.g.,
cymbals and timpani) are considered inharmonic, whereas others (e.g., bells or the
piano) feature different degrees of inharmonicity (Fletcher 1999; Rigaud & David
2013). The spectrum of the piano, for example, has partials whose inharmonicity is
proportional to the partial number. So, the higher the frequency, the greater is the
deviation from the harmonic series (Rigaud & David 2013). This characteristic inhar-
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monicity is an essential property of the timbre of the piano. Features that are specific
to certain musical instruments, commonly called specificities, are directly related to
timbre perceptions of these instruments. For instance, the timbre of clarinet sounds,
described as “hollow” (McAdams et al. 1995), can be linked to spectral energy pre-
dominantly concentrated around odd harmonics. The odd-to-even harmonic energy
ratio (Peeters et al. 2011) is a descriptor that quantifies this particular specificity.

Pollard and Jansson (1982) proposed a three-dimensional representation of tim-
bre dubbed tristimulus. Each dimension of the tristimulus representation contains
the loudness of a group of partials (i.e., how much energy each group contributes to
the overall spectrum). The first dimension has the fundamental frequency, the sec-
ond dimension includes partials two to four, and the third dimension contains the
rest of the partials from the fifth to the highest. Pollard and Jansson (1982) used the
tristimulus method to represent the temporal evolution of musical instrument sounds
and revealed variations in timbre with time, especially between the attack transients
and the steady state with its more stable oscillatory behavior. Section 11.3.4 will
explore further the temporal evolution of descriptors and timbre.

11.3.3 The Excitation-Filter Model and Audio Descriptors

There are several descriptors of timbre based on the excitation-filter model of sound
production (introduced in Sect. 11.2.6). These descriptors typically capture infor-
mation related to the filter component of the model, which is responsible for the
relative distribution of spectral energy. Perceptually, the relative energy of spectral
components is directly related to timbre and is sometimes called sound color
(Slawson 1985). When associated with the excitation-filter model, the spectral enve-
lope (see the spectral envelope panels in Figs. 11.1-11.3) is commonly used to
represent the filter component.

Descriptors of timbre based on the excitation-filter model commonly use the
magnitude spectrum and discard the phase, autocorrelation coefficients being the
quintessential example. Autocorrelation is a measure of self-similarity, whereby a
signal is compared with its own past and future values. The autocorrelation and
convolution operations share similarities that become more evident with the DFT
(Jaffe 1987b). The autocorrelation coefficients are the time domain representation
of the power spectral density (Jaffe 1987b; Brown et al. 2001), so they are related to
the filter component. The relationship between autocorrelation coefficients and
power spectral density is exploited further by linear prediction (Makhoul 1975).

11.3.3.1 Linear Prediction Coefficients

Linear prediction (Makhoul 1975) assumes that a signal can be described as a
weighted linear combination of past values plus an external influence. The external
influence accounts for the force exciting the vibrating object that generated the sig-
nal, whereas the vibrating object itself is not explicitly modeled. When the external
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influence is unknown, the signal can only be approximated by its past values. The
model parameters can be estimated by minimizing the mean squared error. The
solution yields the set of linear prediction coefficients (LPC) that best predict the
next value of the signal given a specific number of preceding values in the least
squared error sense, which is mathematically equivalent to using the autocorrela-
tions to estimate the LPC (Makhoul 1975).

The LPC are commonly represented in the frequency domain with the
Z-transform, which encodes essentially the same information as the Fourier trans-
form (Jaffe 1987b) but in a more general framework. Similarly to the DFT, the
Z-transform can also be interpreted as the frequency domain representation of the
signal. The Z-transform of the linear prediction model explicitly reveals the fre-
quency response of the vibrating object under the force that resulted in the sound
spectrum. This frequency response is the filter component, commonly called the
transfer function, and it fully characterizes the model of sound production under
certain assumptions (Makhoul 1975).

Immediate physical and physiological interpretations for musical instrument
sounds and speech can be derived from the LPC. For example, the LPC can be inter-
preted as a model of the resonances of the vocal tract in speech production (Makhoul
1975) because they encode the poles of the filter that approximates the original
power spectral density. Linear prediction is commonly used to approximate the
power spectrum with the spectral envelope (see the LP curve in the spectral enve-
lope panels in Figs. 11.1-11.3), defined as a smooth curve that approximately con-
nects the spectral peaks (Burred et al. 2010).

11.3.3.2 The Cepstrum

The cepstrum (Bogert et al. 1963; Childers et al. 1977) is intimately connected with
the excitation-filter model because it was originally developed as a deconvolution
method (Bogert et al. 1963). The excitation-filter model postulates that a waveform
can be described mathematically as the convolution between the filter and the exci-
tation. Deconvolution allows recovery of either the filter or the excitation from the
waveform. In the frequency domain, convolution becomes multiplication (see Sect.
11.2.6) and deconvolution becomes inverting the result of the multiplication.
Division is the simplest method when the DFT of either the excitation or the filter is
available, allowing recovery of the other. However, in most practical applications,
only the waveform resulting from the convolution between the excitation and the
filter is available. In this case, the logarithm can be used to transform the multiplica-
tion operation into addition. If the terms of the resulting addition do not overlap in
frequency, it is possible to isolate either one from the other by filtering. The ceps-
trum is the formalization of this deconvolution operation (Childers et al. 1977),
which has found several applications in audio research, such as fundamental fre-
quency estimation (Childers et al. 1977), spectral envelope estimation (Burred et al.
2010), wavelet recovery (Bogert et al. 1963), and musical instrument classification
(Brown 1999; Herrera-Boyer et al. 2003). The spectral envelope panels in
Figs. 11.1-11.3 show its estimation with the cepstrum (identified as CC).
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a) Real cepstrum
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Fig. 11.5 Illustration of the sequence of steps to calculate cepstral coefficients with the real ceps-
trum (a) and mel-frequency cepstral coefficients (MFCC) (b) from the waveform. Abbreviations:
abs(), absolute value; DCT, discrete cosine transform; DFT, discrete Fourier transform; /IDFT,
inverse discrete Fourier transform; log(), logarithm function; MFCC, mel-frequency cepstral
coefficients

The real cepstrum can be defined as the inverse DFT of the logarithm of the
magnitude of the DFT of the waveform. Fig. 11.5 illustrates the steps to obtain
cepstral coefficients from a waveform (labeled input signal). The cepstral coeffi-
cients contain frequency information about the log magnitude spectrum similarly to
how the LPC encode the resonances of a transfer function. In practice, these coef-
ficients encode information about periodicity of the log magnitude spectrum at
increasing cepstral frequencies, which were originally called “quefrencies” (Bogert
et al. 1963), because they carry frequency information in time domain units. This
unfamiliar symmetry was reflected in language by rearranging syllables of familiar
terms from Fourier analysis. Particularly, “cepstrum” derives from spectrum and is
pronounced kepstrum.

11.3.3.3 Mel-Frequency Cepstral Coefficients

Conceptually, the cepstral coefficients are closely related to the filter component of
the excitation-filter model and of the ubiquitous mel-frequency cepstral coefficients
(MFCC; mel is short for melody). Davies and Mermelstein (1980) introduced
MEFECC in the context of speech research. The MFCC can be viewed as a perceptu-
ally inspired variation of cepstral coefficients calculated as illustrated in Fig. 11.5.
The MFCC filter bank uses triangular filters centered at frequencies given by the
mel scale with a bandwidth proportional to the center frequency.

The perception of pitch allows listeners to order sounds on a scale from low to
high along the same psychological dimension of melody (Hartmann 1996). A sound
has a certain pitch if it can be reliably matched by adjusting the frequency of a sine
wave of arbitrary amplitude (Hartmann 1996). The mel scale was derived by asking
listeners to set the frequency of a test sine wave to obtain a pitch that was a fraction
of the pitch of a reference sine wave across the entire audible frequency range
(approximately between 20 Hz and 20 kHz). It is linear up to 1 kHz and logarithmic
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above 1 kHz. Stevens et al. (1937) concluded that the mel scale captures the concept
of pitch height (i.e., higher or lower pitches) as opposed to pitch chroma (i.e., the
octave-independent musical notes). The MFCC use the discrete cosine transform
(commonly used in MPEG audio and image compression) instead of the DFT or the
Z-transform commonly used for cepstral coefficients. Thus, MFCC are considered
a particularly compact representation of the filter due to the compression properties
of the discrete cosine transform, which results in most of the spectral shape being
captured typically by the first thirteen coefficients.

The MFCC are ubiquitous not only in speech for tasks such as speaker recogni-
tion (On et al. 2006; Martinez et al. 2012) but also in MIR tasks such as musical
instrument classification (Deng et al. 2008). Some results suggest that MFCC can
also explain timbre. For example, Terasawa et al. (2005) compared MFCC, LPC,
and tristimulus (see Sect. 11.3.2.2) representations to explain the pairwise percep-
tual dissimilarity ratings of sounds created with frequency-modulation synthesis.
They found that the Euclidean distances between MFCC accounted for 66% of the
variance and concluded that thirteen MFCC can be used as a model of timbre spaces.
Horner et al. (2011) compared different error metrics to predict the discrimination
performance of listeners for sounds synthesized with fixed fundamental frequency
and variable spectral envelope. They found that the first twelve MFCC were suffi-
cient to account for around 85% of the variance of data from human listeners.

11.3.4 Temporal Dynamics of Audio Descriptors

Many descriptors are calculated for every frame of time-frequency representations,
such as the STFT, giving rise to a time series of descriptor values that characterizes
the temporal evolution of each descriptor. The descriptor evolution panels in
Figs. 11.1-11.3 show the temporal evolution of the spectral centroid and spectral
spread, revealing local variations corresponding to changes such as note transitions.
However, most applications, such as musical instrument classification, require one
single value of each descriptor that would be representative of the entire sound dura-
tion. Commonly, the time average of each descriptor is used for each sound, result-
inginadescriptor vector. Descriptors such as the spectral centroid are unidimensional,
whereas others, such as MFCC, are multidimensional. Therefore, descriptor vectors
discard all information about the temporal variation of descriptors.

The simplest way to include more information than the time average of the
descriptors is to use a set of summary statistics such as mean, standard deviation (or
variance), minimum, and maximum values (Casey et al. 2008). Peeters et al. (2011)
found that robust summary statistics had a greater impact than the audio representa-
tion on the descriptors. Specifically, the median and the interquartile range captured
distinct aspects of the signals. McDermott et al. (2013) suggested that environmental
sounds are recognized by summary statistics alone because the temporal information
in environmental sounds can be captured by summary statistics. However, the tem-
poral structure inherent to speech and musical sounds requires encoding temporal
information in different ways.
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The first and second derivatives with respect to time (of the time series of descrip-
tor values) are another popular approach to include temporal information in the
descriptor vector. It is particularly common to use MFCC and their first and second
temporal derivatives, called delta and delta-delta coefficients, respectively (De Poli
and Prandoni 1997; Peeters et al. 2011). However, the delta and delta-delta coeffi-
cients are usually added to the descriptor vector as extra dimensions assumed to be
independent from the descriptor values. Consequently, the information contained in
the time series of descriptor values is not fully exploited. For example, Fig. 11.2
reveals that the spectral centroid of speech varies considerably between periodic
and noisier segments. Similarly, for musical instruments, the temporal variation of
descriptors follows musical events such as note transitions. The amplitude/centroid
trajectory model (Hajda 2007) shown in Fig. 11.6 proposes to use the root-mean-
squared amplitude envelope in conjunction with the temporal evolution of the spec-
tral centroid to segment sustained sounds from musical instruments into attack,
transition (so-called decay), sustain, and release portions. Fig. 11.6 shows the
amplitude-centroid trajectory model used to segment notes from sustained musical
instruments (Caetano et al. 2010). Segmentation of musical instrument sounds with
the amplitude-centroid trajectory model yields better results for sustained instru-
ments than percussive ones because sustained instruments fit the model better.

The use of a descriptor vector with the time average of each descriptor in each
dimension is called the bag of frames approach because it treats the time series of
descriptors as a global distribution, neglecting both the temporal variation and the
sequential order of descriptor values (Levy and Sandler 2009; Huq et al. 2010). This
approach can be successfully used to classify environmental sounds (Aucouturier
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Fig. 11.6 Temporal segmentation of musical instrument sound with the Amplitude/Centroid
Trajectory (ACT) model. Top panel: the full-wave rectified waveform outlined by the temporal
amplitude envelope (solid line) and the temporal evolution of the spectral centroid (dashed line).
The vertical bars mark the segments estimated with the ACT method. See text for an explanation
of the segments. Bottom panel: the spectrogram of the waveform on the top. (Reproduced from
Caetano et al. 2010; used with permission)
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et al. 2007) with Gaussian mixture models representing the global distribution of
MFCC. However, it is inappropriate for polyphonic music (Aucouturier et al. 2007)
in which the sequence of events contains important information. In music, there is a
clear hierarchical structure where higher levels of abstraction emerge from lower
levels. For example, patterns of notes are organized into phrases, and rhythmic
structure emerges from relative note durations. Aucouturier et al. (2007) speculated
that the hierarchical structure of polyphonic music carries information on a more
symbolic level than is captured by descriptors such as MFCC, requiring incorpora-
tion of information such as harmony and melody.

Temporal modeling of descriptors has been successfully applied in instrument
classification and detection. Models of musical instrument sounds that rely on spec-
trotemporal representations are capable of capturing the dynamic behavior of the
spectral envelope (Burred and Robel 2010; Burred et al. 2010). Principal component
analysis reduces the dimensionality of the model by projecting the time-varying
parameters of the spectral envelopes onto a lower-dimensional space, such as the
three-dimensional space shown in Fig. 11.7. The resultant prototypical temporal evo-
lution of the spectral envelopes was modeled as a nonstationary Gaussian process
and was shown to outperform MFCC for the classification of isolated musical instru-
ments and to allow for instrument recognition in polyphonic timbral mixtures.

CLARmET

Third principal component

Fig. 11.7 Temporal evolution of the spectral envelope of musical instrument sounds. The tempo-
ral trajectory of the spectral envelope of the musical instruments indicated (clarinet, oboe, piano,
trumpet, and violin) is shown in a three-dimensional representation obtained with principal com-
ponent analysis. (Reproduced from Burred and Robel 2010; used with permission)
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11.3.5 Information Redundancy of Audio Descriptors

Descriptor vectors stack several descriptors under the assumption that each dimen-
sion is statistically independent from the others. While this assumption might hold
true for some descriptors, such as MFCC, which are decorrelated by construction
due to the discrete cosine transform (see Sect. 11.3.2.2), other descriptors are highly
correlated. Peeters et al. (2011) investigated the correlation structure among descrip-
tors extracted with alternative representations based on an analysis of over 6000
musical instrument sounds with different pitches, dynamics, articulations, and play-
ing techniques. The authors observed that a change in the audio representation (e.g.,
STFT versus ERB-spaced filterbank versus harmonic content) had relatively little
effect on the interdescriptor correlation compared to the change in the summary
statistic computed on the time-varying descriptors, although no prediction of per-
ceptual data was undertaken in that paper.

Several strategies have been proposed to decrease information redundancy in
descriptor vectors. Among these, the most common ones fall generally into descrip-
tor selection or descriptor decomposition strategies. Descriptor selection involves
finding the subset of descriptors that is useful to build a good predictor (Hugq et al.
2010) by eliminating descriptors that are either irrelevant or redundant. On the other
hand, descriptor decomposition techniques apply transformations on the original
space of descriptors that aim to maximize the information that is relevant for a task
in the reduced space, such as the variance of the descriptors or the discriminability
of classes. These transformations commonly involve projection or compression
techniques, such as principal component analysis for the former and the discrete
cosine transform for the latter. Descriptor decomposition techniques commonly dis-
tort the original representation in ways that can render interpretation more difficult.
For example, principal component analysis results in linear combinations of the
original dimensions that, in practice, render a perceptual interpretation of the results
that is more arduous because each principal component accounts for more than one
descriptor. Descriptor selection preserves the original meaning of the variables by
preserving their original representation, ultimately offering the advantage of inter-
pretability. At the same time, descriptor selection can lead to choices that seem arbi-
trary in that the selected descriptors may vary a great deal from one study to another.

11.4 Applications of Timbre Descriptors

Audio content descriptors find several applications that involve timbre description.
Examples about the study of timbre psychoacoustics are discussed in Sect. 11.4.1;
the multimedia content description interface also known as MPEG-7 is discussed
in Sect. 11.4.2; computer-aided orchestration is discussed in Sect. 11.4.3; and
musical instrument sound morphing guided by descriptors of timbre is discussed in
Sect. 11.4.4.
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11.4.1 Timbre Psychoacoustics

Audio signal descriptors have been central to the psychoacoustics of timbre, which
seeks an explanation of timbre perception on acoustic grounds. Most of this research
has used musical instrument sounds. A notable exception is the work by Zwicker
and Fastl (1990), who presented acoustic models of sharpness, fluctuation strength,
and roughness, which have been used mainly to characterize the sound quality of
product sounds (see Lemaitre and Susini, Chap. 9). In the following discussion,
three examples of using audio descriptors for psychoacoustics research will be
addressed. These examples highlight the search for acoustic correlates of timbral
brightness judgements and sound source recognition.

For musical sounds, two methods to study brightness perception can be distin-
guished. First, timbre space dimensions obtained via MDS of general dissimilarity
judgements have consistently been interpreted as associated with the brightness of
sounds (see McAdams, Chap. 2). Second, several studies have directly asked par-
ticipants to rate the brightness of sounds and have correlated the resulting ratings
with descriptor values. For instance, Schubert and Wolfe (2006) considered whether
direct brightness ratings are better predicted by the absolute spectral centroid or the
(supposedly pitch invariant) centroid rank (the centroid divided by the fundamental
frequency). The latter predictor, however, failed to correlate significantly with sub-
jective brightness, whereas the absolute centroid did.

Marozeau and de Cheveigné (2007) proposed a refined spectral centroid descrip-
tor to model the brightness dimension of dissimilarity ratings. The approach was
conceptually related to the sharpness descriptor by Zwicker and Fastl (1990) in that
it relied on the computation of partial loudness in spectral bands (but the Zwicker
model only insufficiently predicted brightness scaling data in Almeida et al. 2017).
Specifically, the descriptor by Marozeau and de Cheveigné (2007) was obtained
from partial loudness values calculated in ERB-spaced spectral bands obtained
from gammatone filtering (see Sect. 11.2.3). An instantaneous spectral centroid was
obtained through the integration across bands and the resulting time series was inte-
grated over time by weighting with an estimate of instantaneous loudness (the sum
over channels of partial loudness). In comparison to the linear spectral centroid
descriptor, the refined brightness descriptor by Marozeau and de Cheveigné (2007)
improved the amount of the explained variance with the perceptual data by 10%
points up to 93%. Further analysis showed that it was much less affected by pitch
variation compared to the more simplistic linear spectral centroid.

Fewer studies have used signal descriptors to address the acoustic features under-
lying sound source recognition and classification (see Agus, Suied, and Pressnitzer,
Chap. 3). Ogg et al. (2017) modeled participant responses in a go/no-go categoriza-
tion task of short sound excerpts varying in duration (12.5-200 ms). Three sound
categories were tested: speech, musical instruments, and human environmental
sounds generated by everyday objects (e.g., keys jingling), by objects of various
materials impacting one another or being deformed (e.g., crumpling newspaper),
and sounds generated by movements of liquid (fingers splashing) or rolling objects
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(marbles rolling down wood). Using exploratory regression analysis with timbre
descriptors from the Timbre Toolbox (Peeters et al. 2011), the study characterized
the acoustic features that listeners were using to correctly classify sounds. Globally,
regression analysis for sounds from every target category indicated that listeners
relied on cues derived from spectral, temporal, pitch, and “noisiness” information.
Different sound categories required different sets of descriptors and weightings of
regression coefficients. For instance, as the median spectral centroid value increased,
listeners were more likely to categorize the stimuli as human environmental sounds
and less likely to consider the sounds as coming from musical instruments. The
descriptors “noisiness” and “spectral flatness” were associated with environmental
and instrument responses, respectively.

Approaches such as these provide valuable starting points to reveal the most
important acoustic features for a given psychophysical task from the plethora of
available audio content descriptors. Giordano et al. (2012) further showed that audio
descriptors can be applied to neuroimaging research (for neurophysiological details,
see Alluri and Kadiri, Chap. 6). Following the approach of representational similar-
ity analyses, they used descriptors to decode fMRI data recorded while participants
listened to environmental sounds. They extracted descriptors based on pitch, loud-
ness, spectral centroid, and harmonicity, and they computed dissimilarity matrices
that contained the pairwise dissimilarity of stimuli according to these descriptors.
Dissimilarity matrices were also derived from the imaging data, specifically, from
the response of each voxel in a region of interest. Then, correlation of the neuro-
physiological and the acoustic dissimilarity matrices resulted in maps that indicated
the association of the activity in a given voxel to a specific acoustic property. Hence,
this approach can infer the brain areas associated with the processing of low-level
acoustic properties represented by the audio descriptors.

These examples indicate that a variety of psychophysical and even psychophysi-
ological questions on timbre can benefit from a deeper involvement with audio
descriptors, which can be easily computed today (Peeters et al. 2011). At the same
time, the correlational nature of the approach warrants rigorous confirmatory stud-
ies to circumvent the strong mutual covariance of descriptors.

More generally, it seems important to acknowledge that work on timbre-related
audio content descriptors is at the crossroads of distinct academic fields, including
MIR, music cognition, and psychoacoustics. Hence, it is important to appreciate
the distinct epistemic traditions and objectives that are ingrained in these fields
(Siedenburg et al. 2016a). Music information retrieval is a task-oriented discipline
rooted in applied computer science and machine learning and, therefore, is pri-
marily interested in the question of how to build robust systems. This implies that
the predictive power of a descriptor is more important than the exact acoustic
properties it encodes. In psychology, however, researchers are interested in the
insights an audio descriptor can bring to the study of a given perceptual phenom-
enon. If a descriptor does not add significantly to the overall explanatory power of
a model, and if the information it encodes is not transparent, then it should be
omitted for the sake of parsimony. These considerations reflect some of the epis-
temic undercurrents of this topic and explain why studies on timbre psychoacous-
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tics have traditionally used relatively fewer audio descriptors, whereas MIR
research on automatic instrument classification used the full gamut of available
descriptors.

11.4.2 MPEG-7 Audio Content Description

The multimedia content description interface (Nack and Lindsay 1999; Martinez
et al. 2002), also known as MPEG-7, is part of a large effort to standardize multime-
dia descriptors and descriptor schemes that allow indexing and searching multime-
dia content, such as pictures, video, audio, and information about how those
elements combine in a multimedia context. Unlike the previous MPEG standards
that addressed coded representations of audiovisual information, MPEG-7 addresses
the representation of information about the content, but not the content itself.
MPEG-7 began as a scheme for making audiovisual material as searchable as text is
today (Nack and Lindsay 1999) and grew to include complex scenarios that employ
image processing (such as surveillance) and media conversion, for example, speech
to text (Martinez et al. 2002). Within the audio domain, MPEG-7 provides a unified
interface for automatic organization of audio from different multimedia sources
(i.e., music and film) for applications in sound archiving and classification, and for
retrieval, such as music indexing, similarity matching, and MIR (Casey 2001a, b).
In addition to traditional timbre description methods that have been applied mainly
to isolated musical instrument notes, MPEG-7 also represents noise textures, envi-
ronmental sounds, music recordings, melodic sequences, vocal utterances (singing
and speech), and audio mixtures of the above (Casey 2001b).

MPEG-7 audio comprises text-based description by category labels, also called
semantic tags, and quantitative description using audio content descriptors, as
explained in Sect. 11.3. Text-based description consists of semantic tags from
human annotations (Casey 2001a; Levy and Sandler 2009), whereas audio content
descriptors, including descriptors of timbre, are automatically extracted from audio
(Lartillot and Toiviainen 2007; Peeters et al. 2011). Audio content descriptors for
MPEG-7 include temporal (i.e., the root-mean-squared energy envelope, zero-
crossing rate, temporal centroid, and autocorrelation coefficients), spectral (i.e.,
centroid, flatness, roll-off, and flux), cespstral (i.e., cepstral coefficients and MFCC),
perceptual (i.e., sharpness), and specific descriptors (i.e., odd-to-even harmonic
energy ratio, harmonic-noise ratio, and attack time).

The semantic tags in text-based descriptions commonly belong to a taxonomy
that consists of a number of categories organized into a hierarchical tree used to
provide semantic relationships between categories. For example, audio can be cat-
egorized into music, speech, or environmental sounds. Each of these categories can
be further divided, such as the family of a musical instrument (i.e., brass, wood-
winds, strings, and percussion), male or female speech, etc. As the taxonomy gets
larger and more fully connected, the utility of the category relationships increases
(Casey 2001b). Semantic tags are commonly used in text-based query applications,
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such as Internet search engines, where text from the query is matched against text
from the tags (Casey 2001a). For example, the query “violin” would retrieve sounds
tagged with “violin” and possibly also “musical instrument,” “strings,” etc. Query-
by-example applications require audio content descriptors to retrieve sounds in a
database that are similar to a target sound provided by the user. In this case, MPEG-7
audio content descriptors are used to compute the similarity with a distance metric
such as dynamic time warping for hidden Markov models (Casey 2001b). Hidden
Markov models are statistical models particularly suited to describe sequences
where the probability of the current value depends on the previous value. In fact,
Casey points out (also see Sect. 11.3.4) that sound phenomena are dynamic and the
descriptors vary in time. In music and speech, this variation carries important infor-
mation that plays a central role both in perception and in automated tasks. Thus, he
proposes to use hidden Markov models in MPEG-7 sound recognition models.
Hidden Markov models partition a sound class into a finite number of states, each
of which is modeled by a continuous (typically Gaussian) probability distribution.
Subsequently, individual sounds are described by their trajectories through this state
space, also called state path. The state path is an important method of description in
the context of MPEG-7 since it describes the evolution of a sound with respect to
states that represent events such as onset, sustain, and release (Casey 2001b).

The categorical information in the MPEG-7 tags can be used for automatic clas-
sification in which the aim is to automatically assign a class from the taxonomy to
audio to which the classifier has not had previous access. Automatic classification
involves training statistical models to learn to recognize the class using a descriptor
vector as input. Among the most widely used descriptors for automatic audio recog-
nition and classification are representations derived from the power spectrum (Casey
2001a). The raw spectrum is rarely used as input in automatic classification due to
the inherent high-dimensionality and redundancy. The typical number of bins of
linearly spaced spectra lies between 128 and 1024, whereas probabilistic classifiers,
such as hidden Markov models, commonly require low-dimensional representa-
tions, preferably fewer than 10 dimensions (Casey 2001b). In MPEG-7, the audio
spectrum projection scheme (Casey 2001a; Kim et al. 2004) requires the application
of dimensionality reduction techniques, such as principal component analysis or
independent component analysis, prior to classification or query-by-example.

Casey concluded that MPEG-7 yielded very good recognizer performance across
a broad range of sounds with applications in music genre classification. However,
works that compared MFCC with MPEG-7 descriptors in multimedia indexing
tasks, such as recognition, retrieval, and classification, found that MFCC outper-
formed MPEG-7.

Kim et al. (2004) compared the performance of MPEG-7 audio spectrum projec-
tion descriptors against MFCC in a video sound track classification task. They used
three matrix decomposition algorithms to reduce the dimensionality of the MPEG-7
audio spectrum projection descriptors to 7, 13, and 23 dimensions and compared the
resulting approaches with the same number of MFCC. They found that MFCC
yielded better performance than MPEG-7 in most cases. They also pointed out that
MPEG-7 descriptors are more computationally demanding to extract than MFCC.
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Similarly, Deng et al. (2008) compared the performance of traditional descrip-
tors (zero-crossing rate, root-mean-squared energy, spectral centroid, spectral
spread, and spectral flux) with MFCC and MPEG-7 on automatic instrument clas-
sification tasks. They used several classification algorithms in musical instrument
family classification, individual instrument classification, and classification of solo
passages. Principal component analysis was used to reduce the dimensionality of
MPEG-7 audio spectrum projection descriptors. They concluded that MFCC out-
performed MPEG-7 and traditional descriptors when used individually.

Finally, Deng et al. (2008) tested descriptor combinations, such as MFCC with
MPEG-7 and MFCC with traditional descriptors, and concluded that the addition of
MPEG-7 to MFCC improved classification performance, whereas traditional
descriptors plus MFCC yielded the poorest performance. They finally noted that the
higher the dimensionality of the descriptors vector, the better the performance; so
they tested the classification performance of descriptor combinations followed by
dimensionality reduction with principal component analysis and found that the
combinations exhibit strong redundancy.

MPEG-7 is a very ambitious international standard that encompasses audio,
video, and multimedia description. MPEG-7 audio was developed to have a similar
scale of impact on the future of music technology as the MIDI and MPEG-1 Audio
Layer III (popularized as the MP3 format) standards have had in the past (Casey
2001b). However, more than 15 years after the introduction of the standard, the
world of audio content descriptors still seems anything but standardized—research-
ers and practitioners continue to develop new approaches that are custom-made for
the specific content-description problem at hand.

11.4.3 Computer-Aided Orchestration

Musical orchestration denotes the art of creating instrumental combinations, con-
trasts, and stratifications (see McAdams, Chap. 8). Initially, orchestration was
restricted to the assignment of instruments to the score and, as such, was largely
relegated to the background of the compositional process. Progressively, composers
started regarding orchestration as an integral part of the compositional process
whereby the musical ideas themselves are expressed. Compositional experimenta-
tion in orchestration originates from the desire to achieve musically intriguing tim-
bres by means of instrumental combinations. However, orchestration manuals are
notoriously empirical because of the difficulty in formalizing knowledge about the
timbral result of instrument combinations.

Computer-aided orchestration tools (Carpentier et al. 2010a; Caetano et al. 2019)
automate the search for instrument combinations that perceptually approximate a
given reference timbre. The aim of computer-aided orchestration is to find a combi-
nation of notes from musical instruments that perceptually approximates a given
reference sound when played together (Abreu et al. 2016; Caetano et al. 2019).
Descriptors of timbre play a key role in the following steps of computer-aided
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orchestration: (1) timbre description of isolated sounds, (2) timbre description of
combinations of musical instrument sounds, and (3) timbre similarity between
instrument combinations and the reference sound.

The timbre of both the reference sound and of the isolated musical instrument
sounds is represented with a descriptor vector comprising a subset of the traditional
descriptors of timbre (Peeters et al. 2011). The extraction of the descriptors is com-
putationally expensive, so the descriptors of the isolated musical instrument sounds
are extracted prior to the search for instrument combinations and kept as metadata
in a descriptor database. The descriptors for the reference sound are extracted for
every new reference used.

Each instrument combination corresponds to a vector of descriptors that captures
the timbral result of playing the instruments together. However, the total number of
instrument combinations makes it impractical to extract descriptors for each possi-
ble combination (Carpentier et al. 2010a). Instead, the descriptor vector of an instru-
ment combination is estimated from the descriptor vectors of the isolated sounds
used in the combination (Carpentier et al. 2010b).

The timbral similarity between the reference sound and the instrument combina-
tion is estimated as the distance between the corresponding descriptor vectors.
Smaller distances indicate a higher degree of timbral similarity (Carpentier et al.
2010a) with the reference, so the instrument combinations with the smallest dis-
tances are returned as proposed orchestrations for a given reference sound.

The resulting instrument combinations found to orchestrate a given reference
sound will depend on which descriptors are included in the descriptor vector. For
example, spectral shape descriptors focus on approximating the distribution of spec-
tral energy of the reference sound. Carpentier et al. (2010a) proposed using the
normalized harmonic energy, global noisiness, attack time, spectral flatness, rough-
ness, frequency and amplitude of the energy modulation, and frequency and ampli-
tude of the modulation of the fundamental frequency. Additionally, they added the
following descriptors not related to timbre: fundamental frequency and total energy.
Caetano et al. (2019) used the frequency and amplitude of the spectral peaks, spec-
tral centroid, spectral spread, and also fundamental frequency, loudness, and root-
mean-squared energy.

The type of reference sound to be orchestrated also plays a fundamental role in
the instrument combinations found by computer-aided orchestration algorithms.
For example, if the composer uses a clarinet sound as reference (and the
musical instrument sound database contains clarinet sounds), the composer should
naturally expect an isolated clarinet note to be the closest instrument combination
found (unless the composer imposes constraints to the search such as returning
instrument combinations without clarinet sounds or with at least three different
instruments). Aesthetically interesting results can be achieved by choosing a refer-
ence sound that belongs to a different abstract category than musical instruments,
such as environmental sounds or vocal utterances, because these references usually
result in complex instrument combinations. To hear examples of orchestrations
using different types of reference sounds, go to the sound files “car_horn.mp3”,
“carnatic.mp3”, “choir.mp3”, and wind_harp.mp3”. Each sound file consists of the
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reference sound followed by four proposed orchestrations from Caetano et al.
(2019).

Perceptually, two important phenomena contribute to attaining aesthetically
interesting orchestrations: timbre blends and sensory proximity. Timbre blends
occur when the timbre of the different instruments used in the combination fuse into
a single percept (see McAdams, Chap. 8). The categorical distinction between the
musical instruments must disappear so the sensory attributes of the combination
emerge as a new timbre. Computer-aided orchestration algorithms find instrument
combinations whose sensory attributes approximate those of the reference sound to
evoke abstract auditory experiences. Audio descriptors of timbre play a key role in
determining the timbre similarity between the instrument combinations and the ref-
erence sound (Siedenburg et al. 2016a). Traditionally, timbre similarity approaches
compare time-averaged descriptor vectors from different musical instrument
sounds, neglecting temporal variations (Esling and Agon 2013). While this is con-
sistent with static timbre spaces, dynamic representations, such as the one shown in
Fig. 11.7, require the use of time series of descriptors.

Computer-aided orchestration exemplifies the benefit of incorporating temporal
information into timbre similarity. The static timbre similarity measure is appropri-
ate when orchestrating reference sounds that are relatively stable (Carpentier et al.
2010a; Abreu et al. 2016). However, matching targets with dynamic variations, such
as an elephant trumpeting, requires a time-series method that takes temporal varia-
tions of descriptors into consideration. Esling and Agon (2013) proposed a multi-
objective time series-matching algorithm capable of coping with the temporal and
multidimensional nature of timbre. The multi-objective time series-matching algo-
rithm adopts a multi-dimensional measure of similarity that simultaneously opti-
mizes the temporal evolution of multiple spectral properties and returns a set of
efficient solutions rather than a single best solution.

11.4.4 Musical Instrument Sound Morphing

The aim of sound morphing is to synthesize sounds that gradually blur the categori-
cal distinction between the sounds being morphed by blending their sensory attri-
butes (Caetano and Rodet 2013). Therefore, sound morphing techniques allow
synthesizing sounds with intermediate timbral qualities by interpolating the sounds
being morphed. Fig. 11.8 shows a striking example of image morphing to illustrate
sound morphing with a visual analogy. The morph is determined by a single param-
eter a that varies between 0 and 1. Only the source sound S is heard when a = 0,
whereas only the target sound 7 is heard when a = 1. Intermediate values of a
should correspond to perceptually intermediate sounds. However, simple morphing
techniques seldom satisfy this perceptual requirement (Caetano and Rodet 2013).
Sound morphing typically comprises the following steps: (1) modeling, (2) interpo-
lation, and (3) resynthesis.
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a) Image morphing

b) Sound morphing
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Fig. 11.8 Illustration of morphing for images and sounds: (a) face morphing; (b) musical instru-
ment sound morphing. The source sound is the C#3 note played forte on a harpsichord and the
target sound is the same note played forte on a tuba. The figure shows the morphing factor a below
each corresponding panel. To hear the sounds, go to the sound file “harpsichord_tuba_morph.
mp3”. The image in (a) is currently publicly available at https://paulbakaus.com/wp-content/
uploads/2009/10/bush-obama-morphing.jpg

The sounds being morphed (S and 7) are modeled (e.g., with the sinusoidal
model or the excitation-filter model) to obtain a parametric representation of S and
T. For example, the parameters of the sinusoidal model are the frequencies and the
amplitudes of the time-varying sinusoids that represent the partials of S and 7. The
parameters of the spectral envelope represent the filter component of the
excitation-filter model. Cepstral coefficients and LPC are common representations
of the filter in the excitation-filter model (Caetano and Rodet 2013).

The parameters of the morphed sound are obtained via linear interpolation
between the parameters of S and 7, for example, interpolation of the amplitudes and
frequencies of the sinusoidal model or interpolation of the cepstral coefficients rep-
resenting the spectral envelope of the excitation-filter model.

Finally, the morphed sound is resynthesized from the interpolated parameters.
Perceptually, the model parameters play a crucial role in the final result, depending
on the information captured by the model. For example, morphing with the sinusoi-
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dal model will result in intermediate amplitudes and frequencies (the model param-
eters), whereas morphing with the excitation-filter model will result in intermediate
spectral envelopes.

The importance of the parametric representation is twofold: resynthesis and
transformation. A parametric model should allow resynthesizing a sound that is
perceptually very similar to the original sound from the model parameters alone.
Sound transformations are achieved via manipulation of the model parameters fol-
lowed by resynthesis, resulting in a sound that is perceptually different from the
original sound. Striking transformations can be achieved by careful manipulation of
model parameters depending on what information they represent. For example, the
frequencies of the sinusoidal model can be manipulated to obtain a pitch transposi-
tion. Sound morphing is the result of parameter interpolation. However, most mor-
phing techniques in the literature interpolate the parameters of the model used to
represent the sounds regardless of the perceptual impact of doing so. Consequently,
the morph is intermediate in the space of parameters rather than perceptually
intermediate.

Caetano and Rodet (2013) used descriptors of timbre to guide musical instrument
morphing toward more gradual transformations. They developed a sophisticated
morphing technique based on a hybrid excitation-filter model where the filter is
represented with spectral envelopes and the excitation has a sinusoidal component
accounting for the partials and a residual component accounting for transients and
noise missed by the sinusoids. Caetano and Rodet (2013) investigated the result of
interpolating several representations of the spectral envelope: the spectral envelope
curve, cepstral coefficients, LPC, reflection coefficients, and line spectral frequen-
cies. Both reflection coefficients and line spectral frequencies arise from an inter-
connected tube model of the human vocal tract. Reflection coefficients represent the
fraction of energy reflected at each section of the model, whereas line spectral fre-
quencies represent the resonance conditions that describe the vocal tract being fully
open or fully closed at the glottis (McLoughlin 2008).

Caetano and Rodet (2013) were interested in measuring the linearity of the mor-
phing transformation with the different spectral envelope representations. They var-
ied a linearly between 0 and 1 for each spectral envelope representation and recorded
the corresponding variation of spectral shape descriptors (spectral centroid, spectral
spread, spectral skewness, and spectral kurtosis). They found that linear interpola-
tion of line spectral frequencies led to the most linear variation of spectral shape
descriptors. Next, they performed a listening test to evaluate the perceptual linearity
of the morphs with their hybrid excitation-filter model and the sinusoidal model.
The listening test confirmed that the hybrid excitation-filter model resulted in
morphs that were perceived as more perceptually linear than the sinusoidal model.
Fig. 11.8 shows an example of musical instrument sound morphing from Caetano
and Rodet (2013). To hear the sounds used in Fig. 11.8, go to the sound file “harp-
sichord_tuba_morph.mp3”.

Perceptually, sound morphing can be viewed as an auditory illusion that is inher-
ently intertwined with timbre because morphing manipulates both the sensory and the
categorical perceptions of the sounds being morphed. For the sake of simplicity, the

Siedenburg, K., Saitis, C., McAdams, S., Popper, A. N., & Fay, R. R. (Eds.). (2019). Timbre : Acoustics, perception, and

cognition. Retrieved from http://ebookcentral.proquest.com

Created from gmul-ebooks on 2020-05-01 10:25:21.



Copyright © 2019. Springer. All rights reserved.

328 M. Caetano et al.

following examples will consider musical instruments and timbre spaces. In theory,
sound morphing can break the categorical perception of musical instrument timbre.
For example, when S and 7 are from different musical instruments, setting a = 0.5
would produce a morph that theoretically resembles the sound of a hybrid musical
instrument. Additionally, sound morphing can be used to create a sonic continuum.
Timbre spaces are inherently sparse, with musical instrument sounds occupying spe-
cific points in an otherwise void space. Morphing musical instrument sounds can
theoretically fill the gaps and create continuous timbre spaces by connecting musical
instruments with intermediate sounds that no acoustical instrument can produce.

11.5 Summary

This chapter introduced the acoustic modeling of timbre via audio content descrip-
tors. Sections were organized around the descriptor extraction process, covering
important topics from general audio representations used to extract timbre descrip-
tors to applications of these descriptors in psychology, sound synthesis, and music
information retrieval. Audio content descriptors have played an important role in
understanding the psychoacoustics of timbre, have become part of the industry stan-
dard MPEG-7 for audio content description, and play crucial roles for current devel-
opments of techniques such as computer-aided orchestration and musical instrument
sound morphing. In these applications, audio descriptors help extract properties
from the audio signal that are often of perceptual relevance and much more specific
when compared to the general audio representations from which they are computed.
At the same time, the audio descriptors described in this chapter are versatile enough
to be valuable across a variety of different timbre-related audio processing tasks.

Audio descriptors could play a pivotal role in future research into timbre percep-
tion and sound processing in myriad ways. Section 11.4.1 outlined the ways in
which the perception of timbral brightness has been modeled on acoustic grounds
using audio descriptors. However, a model of timbre brightness perception that
clearly delineates the acoustic ingredients of this important aspect of timbre percep-
tion has yet to be constructed and evaluated. Such a model would need to account
for a variety of experimental phenomena (see McAdams, Chap. 2) across a large set
of sounds. Section 11.4.3 and 11.4.4 summarized the role of audio descriptors in
computer-aided orchestration and sound morphing. Here audio descriptors act as a
perceptual proxy to allow synthesizing sounds with predefined perceptual charac-
teristics. Adaptive processing (Verfaille et al. 2006) and content-based transforma-
tions (Amatriain et al. 2003) use audio descriptors to address the highly nonlinear
connection between the audio and sound perception. However, the fundamental
problem of synthesizing a waveform that matches a desired perceptual result
remains a challenge.

Currently, the status of various approaches to audio content description is at a
crossroads. The rise of machine learning architectures, such as deep neural networks,
renders traditional audio descriptors obsolete in tasks such as musical instrument
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identification, environmental scene classification, or speaker recognition. Traditional
audio descriptor-based classification architectures require two steps prior to learning
per se: descriptor extraction followed by either descriptor selection or dimensional-
ity reduction (see Sect. 11.3.4). One problem of these architectures is that they often
fail to capture the highly nonlinear relationships commonly found in complex clas-
sification tasks. Deep neural networks are feed-forward artificial neural networks
with several layers of hidden units between inputs and outputs (Hinton et al. 2012).
The depth of the network provides sufficient flexibility to represent the nonlineari-
ties critical to a given task such that deep neural networks jointly learn the descrip-
tors and the classifier (Takahashi et al. 2018).

However, the main challenge of deep learning architectures lies in their applica-
tion in timbre acoustics, perception, and cognition. Kell et al. (2018) made a signifi-
cant contribution when they presented a deep neural network optimized for both
speech and music recognition tasks. The deep neural network performed as well as
humans, exhibited error patterns that resembled those of humans, and outperformed
a linear spectrotemporal filter model of auditory cortex in the prediction of fMRI
voxel responses. Moreover, the trained network replicated aspects of human cortical
organization and provided evidence of hierarchical organization within the auditory
cortex, with intermediate and deep layers best predicting primary and nonprimary
auditory cortical responses, respectively. Nonetheless, prediction is not identical to
understanding. Even though a good model should predict future data, a model needs
to be transparent in order to allow for proper theory building. Future work in this
direction will be able to draw insightful connections between the pattern of oscilla-
tions carried by sound waves and the timbre that listeners extract from these waves.
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